Section 5.4

Definition of the Natural Exponential Function: The inverse function of the natural logarithmic function $f(x)=\ln x$ is called the natural exponential function and is denoted by

$$
f^{-1}(x)=e^{x}
$$

That is,

$$
y=e^{x} \quad \text { if and only if } \quad x=\ln y
$$

Operations with Exponential Functions: Let a and b be any real numbers.

1. $e^{a} e^{b}=e^{a+b}$
2. $\frac{e^{a}}{e^{b}}=e^{a-b}$

Derivatives of the Natural Exponential Function: Let u be a differentiable function of x.

1. $\frac{d}{d x}\left[e^{x}\right]=e^{x}$
2. $\frac{d}{d x}\left[e^{u}\right]=e^{u} \frac{d u}{d x}$

Integration Rules for Exponential Functions: Let u be a differentiable function of x.

1. $\int e^{x} d x=e^{x}+C$
2. $\int e^{u} d u=e^{u}+C$
1) Solve $3=e^{4 x+3}$.
2) Solve $\ln (5 x+1)=3$.
3) Differentiate the following:
a) $f(x)=6 e^{3 x+4}$
b) $g(x)=e^{\sin x / x}$
4) Find the following:
a) $\int e^{2 x-9} d x$
b) $\int 4 x^{2} e^{-x^{3}} d x$
c) $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$
d) $\int \csc ^{2} x e^{\cot x} d x$
5) Evaluate each definite integral.
a) $\int_{1}^{2} e^{-2 x} d x$
b) $\int_{0}^{1} \frac{e^{x}-1}{e^{x}} d x$
c) $\int_{0}^{1} \frac{1+e^{x}}{x+e^{x}} d x$
